top of page
  • Writer's pictureBy The Financial District

World's Most Powerful X-Ray Laser Fires 1M Bursts A Second

The world’s most powerful X-ray laser is ready for operation after a massive overhaul. A powerful upgrade to Stanford’s Linac Coherent Light Source (LCLS), LCLS-II uses temperatures colder than deep space to accelerate electrons to near light-speed and fire off a million X-ray bursts per second, Michael Irving reported for New Atlas.


Photo Insert: The world's most powerful X-ray laser fire a million bursts per second thanks to the LCLS-II upgrade.



LCLS-II is what’s known as a hard X-ray free-electron laser (XFEL), an instrument designed to snap images of microscopic objects in high resolution and at ultrafast time scales.


Its predecessor was used to image viruses, recreate the conditions at the center of a star, boil water into plasma states hotter than Earth’s core, create the loudest sound possible, and make the kind of “diamond rain” that could fall on planets like Neptune.



The newly completed second phase of the instrument will be capable of much more. X-ray pulses from LCLS-II will be on average 10,000 times brighter than those of its predecessor, and it will fire off a million of them every second – a huge increase over the original’s mere 120 pulses per second.


“In just a few hours, LCLS-II will produce more X-ray pulses than the current laser has generated in its entire lifetime,” said Mike Dunne, director of LCLS.


All the news: Business man in suit and tie smiling and reading a newspaper near the financial district.

“Data that once might have taken months to collect could be produced in minutes. It will take X-ray science to the next level, paving the way for a whole new range of studies and advancing our ability to develop revolutionary technologies to address some of the most profound challenges facing our society.”


LCLS-II works in the same basic way as the first generation – electrons are generated and then accelerated down a long pipe before they enter an “undulator” that makes them wobble until they throw off X-rays side to side. But each step of that process has now had an upgrade.


Science & technology: Scientist using a microscope in laboratory in the financial district.

The biggest overhaul is the accelerator in the middle. Where previously the electrons were fired down a copper pipe at room temperature, LCLS-II uses a set of 37 cryomodules to chill the equipment down to -271 °C (-456 °F), a hair above absolute zero. It does this by piping liquid helium coolant into the modules from two large helium cryoplants.


As electrons move through a series of niobium cavities, an oscillating electrical field transfers energy to them, accelerating them to near the speed of light.





Optimize asset flow management and real-time inventory visibility with RFID tracking devices and custom cloud solutions.
Sweetmat disinfection mat

bottom of page